VACUUM ARC ION FLUX FROM VACUUM INTERRUPTER CONTACT GAP

M. KURRAT

Technische Universitaet Braunschweig, Institute for High Voltage Technology and Electrical Power Systems
Schleinitzstrasse 23, 38106 Braunschweig, Germany
m.kurrat@tu-braunschweig.de

Abstract. Dielectric properties of vacuum interrupters are influenced by metal vapour deposition on the inner ceramic surfaces. Therefore these surfaces are partly protected by shield electrodes. The metal vapour originates from the vacuum arc in the contact gap during switching off process. Metal layer thickness on ceramics after switching operations were measured by Gramberg [1] and the negative effect on dielectric performance was demonstrated. In this paper we address the principle transport process of metal vapour in vacuum interrupters. Düning [2] and Beilis [3] performed ion flux measurements from vacuum arcs. We regard experiments with 5kA effective arc current. There seems to be experimental evidence that the final particle transport onto the ceramic surface within a shield gap can be explained by particle tracing. The measured deposited layer thickness is taken as quantity to validate vapour densities and transport processes in vacuum interrupters.

Keywords: vacuum interrupter, vacuum arc, ion flux, metal vapour, layer deposition, particle tracing.

1. Introduction

The contact system of a vacuum interrupter is surrounded by the main shield made of copper. Breaking currents generates a metal vapour arc between the contacts (fig. 1). This arc emits metal vapour into the vacuum chamber at increasing gas pressure. After cooling the metal vapour condenses on main and end shields, but also on the inner surface of the ceramic insulator. The deposited conductive layers bridge partly the dielectric gaps between the shields (fig. 1, layer length L). The dielectric strength is decreased by shortening the dielectric gap and a flash over across the inner ceramic surface may result by overvoltage incidents (fig. 1).

To investigate the reduction of dielectric strength, vacuum interrupter with simple shield geometry were tested. High numbers of short circuit breaking operations were done in a test circuit. After breaking tests the significant dielectric performance reduction was evaluated by lightning impulse tests [1]. To improve the knowledge about the metal vapour layer deposition process the vacuum interrupters were opened after the tests. The layer position and thickness were measured. Figure 2 shows the layer thickness on the ceramic surface of the inter shield gap after 40 breaking operations at 5kA.

The vertical lines mark the position of the inter electrode gap between position 5 and 12mm. In between the thickness of the deposition layer reached the maximum value. But the deposition layer was also found behind the shields. The thickness decreases with increasing distance from the inter shield gap.

2. Particles Generation and Transport

The metal vapour flux from the arc between the contacts to the main shield is generated by the arc pressure. But the question arises what kind of transport mechanisms controls the deposition process behind the shields. Is it still a diffusion process and what is about the mean free path length? A stepwise approach for a simple calculation will be proposed in turn below. The particles are generated in the arc and released. Secondly the particles diffuse into the whole volume
creating a gas pressure in the vacuum chamber. The last step is the deposition process between main and end shield.

2.1. Ion Flux from Contact Gap

Rusteberg [4] and Düning [2] measured the ion flux from a diffuse mode vacuum arc with currents up to 10 kA. Ion current densities and ion energies were measured with a retarded field analyzer. For the calculations they assumed thermal arc plasma completely ionized and dominated by ion collisions. In result scattered ions with radial velocity components leave the contact gap with an ion current density J_i (fig. 3).

The calculated radial ion current density leaving the contact gap refers to a cylindrical control area A_c around the contact gap as shown in fig. 4.

Some more quantities can be deduced from the measured quantities [5] using equations (1) and (2). The measured ion energies allow the calculation of the ion velocities v_i. And the measured ion current densities J_i include the information about the ion densities n_i regarding ion charge q.

$$J_i = n_i v_i q \quad (1)$$

$$W_i = \frac{1}{2} m_i v_i^2 \quad (2)$$

The calculated ion densities of the radial flux increase with the arc current up to values of 10^{19}m^{-3} as shown in fig. 5.

The maximum ion energies were observed at lower short circuit currents. Thermal ion energies at high arc currents yield high velocities about $v_i = 10^4 \text{m/s}^{-1}$. High ion densities result in a low mean free path λ_i in the mm range calculated for high arc currents with equation (3).

$$\lambda_i = \frac{v_i}{c_0 n_i}, \quad c_0 = 8 \cdot 10^{-13} \text{m}^3\text{s}^{-1}. \quad (3)$$

2.2. Axial Collisional Transport

The burning arc emits continuously ions from the contact gap into the vacuum chamber through the control area A_c. The total ion number escaping from the arc gap within one time step Δt is given by eq. (4).

$$N_i = n_i(gap) \cdot v_i(gap) \cdot A_c \cdot \Delta t \quad (4)$$

To obtain a particle density in the vacuum chamber the total number of ions from the arc gap is divided by the chamber volume $V_{chamber}$ as shown by eq. (5).

$$n_i(chamber) = \frac{N_i}{V_{chamber}} \quad (5)$$

The dark blue volume in fig. 6 without electrode gap and inter shield gaps is taken as chamber volume $V_{chamber}$ filled by metal vapour. It is assumed that the initial ion flux is distributed as metal vapour over the chamber volume within one time step of 0.1 ms. The distribution process is not completely understood but some physical aspects are described in turn. The positive ion flux is directed to the main shield. When the ions hit the copper shield, they are neutralized by electrons. Due to the ionization energy further electrons may be liberated from the metal (secondary electron emission) and further atoms are neutralized. The low sticking coefficient about 2% may be a result of this surface process. In addition the main shield is charged by the ion flux and the positive ions are retarded and do not reach the shield. In result a diffusion process is assumed and electric forces are not regarded.

With the arc current dependence of the measured ion flux shown in fig. 5 the mean density of the metal vapour in the vacuum chamber can be calculated for the sinusoidal arc current. The particle density in the
vacuum chamber reaches 10^{-19} m^{-3} calculated with an integration time step of 0.1 ms. The mean free path has accordingly a length in the mm range. The particle density reduction through sticking to metal surfaces during one time step is neglected. The total particle density in the vacuum chamber is shown in fig. 7 for one half sine of a 5kA arc current (rms). The high initial ion velocity of 10^4 m s^{-1} supports the metal vapour diffusion through the whole vacuum chamber within one time step.

2.3. Radial Transport in Shield Gap

The last transport path is the gap between the shields. The regarded transport volume is marked with a red box in fig. 6. The metal vapour density in the chamber volume in front of the shield gap is given in fig. 8 as “particle source” within one time step. To calculate the particle number which are collected by the ceramic insulator surfaces a rough two-dimensional discretisation of the inter shield gap volume is applied as shown in fig. 8. Depending on the mean free path two transport processes are possible: Diffusion or crossing the inter shield gap without collisions.

2.3.1. Collisonal Transport

The first transport process test assumes diffusion as predominant. The two dimensional partial differential equation (6) is solved numerically by difference equations with total particle numbers N in cells of constant volumes and diffusion coefficient D.

$$\frac{\partial N}{\partial t} = D \cdot \left[\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right] \quad (6)$$

The particle densities of the particle source cells are given in equation (5). The particle distribution is calculated within one time step $\Delta t = 0.1 \text{ ms}$ with 5 iterations of 5-points difference equations (compass notation). The shield cells and insulator cells are particle drains and the sticking coefficients C_{st} determine the particle collection of these cells. The particle numbers N_1 and N_2 in the example cells in fig. 9 are given in the iteration equations (7), (8).

$$N_1 = \left(N_N + N_E + N_S \right) / (3 + C_{st}(\text{shield})) \quad (7)$$

$$N_2 = \left(N_E + N_S + N_W \right) / (3 + C_{st}(\text{ceramic})) \quad (8)$$

The cell definitions are shown in fig. 9 and they are applied at every volume cell connected to a shield cell or a ceramic cell. Due to the low sticking coefficient C_{st} only a small part of particles is collected from the insulator cells.

2.3.2. Particle Tracing

The second transport process test assumes low particle densities and no particle collisions in the shield gap. Particles from the vacuum chamber volume fly from the source cells i directly to the ceramic insulator cells j. For each insulator cell a receiving coefficient $R_{c(i,j)}$ is calculated within one time step according to the geometry. fig. 10 shows the particle tracing lines from the centre of the source cells to the receiving insulator cells. The given receiving coefficients $R_{c(i,j)}$ for the insulator cells show the geometrical dependance examplarily. The particle numbers in each insulator cell j is the sum in equation (9) over all plasma source cells i.

$$N_j(\text{insulator}) = \sum_i R_{c(i,j)} \cdot N_i(\text{source}) \quad (9)$$

2.4. Calculation of Layer Thickness

The numbers of metal particles reaching the insulator surface cells are summed up during one half sinewave.
Vacuum arc ion flux

of arc current. A low sticking coefficient of copper on ceramic surface about 2% is assumed. The layer thickness t is calculated due to the particle number per surface area A_r as shown in Fig. 11. The mass of the layer is given by the number of particles and the atomic mass unit $u = 63$. The deposited layer thickness t is calculated by the insulator cell surface area A_r and the specific density $\rho = 8.9 \text{ g cm}^{-3}$ of copper as given by equations (10), (11).

$$m = N \cdot u \cdot 1.66 \cdot 10^{-24} \text{ g}$$ \hspace{1cm} (10)

$$t = m / (\rho \cdot A_r)$$ \hspace{1cm} (11)

3. Results

The diffusion approach assumes a low average free path length and therefore fluid dynamics are applicable. Figure 12 shows the layer thickness after 40 breaking operations at 5 kA arc current. The curve shows the measured thickness values of 30 nm with a steep decrease behind the end shield and a broader one behind the main shield. The calculated layer thickness for the insulator cells are given as bars. The calculated values exhibit a broad distribution of layer thickness behind the shields.

The particle tracing approach assumes a collisional free transport in the shield gap. The bar graph in Fig. 13 shows the layer thickness of the insulator cells obtained by free particle flight through the inter shield gap. The bar distribution is quite similar to the measured distribution curve. The layer thickness is influenced by the “optical properties”. The distribution exhibits a shadow effect of the end and main shield.

4. Conclusion

A simple model calculation for the deposition of metal vapour is compared to experimental results. The following are found.

- The ion flux from vacuum arc is one important source for metal vapour emission into the vacuum chamber.
- The ions are partly or completely converted into neutrals and are distributed over the vacuum chamber volume by diffusion.
- It seems to be a free particle flight in the inter shield gap to the insulator surface which shows the measured shadowing effect of the shields.
- The calculated layer thickness with low sticking coefficient about 2% agrees quite well with measured values.

References

