RECENT TRENDS IN DEVELOPMENT OF HIGH VOLTAGE CIRCUIT BREAKERS WITH SF$_6$ ALTERNATIVE GASES

M. SEEGERa, R. SMEETSb, J. YANc, H. ITOd, M. CLAESSENSe, E. DULLNIe, L. FALKINGHAMf, C. M. FRANCKg, F. GENTILh, W. HARTMANNi, Y. KIEFFELj, S. JIAk, G. JONESe, J. MANTILLAe, S. PAWARi, M. RABIEg, P. ROBIN-JOUANi, H. SCHELLEKENSh, J. SPENCERc, T.UCHIIm, X. LIk, S. YANABUk

a ABB Switzerland Ltd, Corporate Research Center, Segelhofstrasse 1K, CH-5405 Baden-Dättwil, Switzerland
b DNV GL, Utrechtseweg 310, 6800 ET, Arnhem, Netherlands
c University of Liverpool, Department of Electrical Engineering and Electronics, Liverpool, L69 3GJ, UK
d Mitsubishi Electric Corp., Tokyo Building 2-7-3, Marunouchi, Chiyoda-ku, Tokyo 100-8310, Japan
e ABB AG, Bahnstrasse 39-4, D-40832 Ratingen, Germany
f Vacuum Interrupters Limited, Sir Frank Whittle Business Centre, Great Central Way, Rugby CV21 3XH, UK
g ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
h Schneider Electric, 35, rue Joseph Monier, 92500 Rueil-Malmaison, France
i Siemens AG, Corp. Techn., Otto-Hahn-Ring 6, 81739 Munich, Germany
j GE Grid Solutions, 51 Espl. du Général de Gaulle, 92900 Puteaux, France
k Xi’an Jiaotong University, 28 Xianning West Road, Beilin, Xi’an, Shaanxi, China
l Crompton Greaves, Dr. Annie Besant Road, Worli, Mumbai – 40001, India
m Toshiba Corp., Power and Industrial Systems RD&D Center, 8 Shinsugita-cho, Kanagawa 235-8523, Japan
$^*{\text{martin.seeger@ch.abb.com}}$

Abstract. The available knowledge of state-of-the-art of SF$_6$ alternative gases in switching applications was collected and evaluated in an initiative of the Current Zero Club [1] together with CIGRE. The present contribution summarizes the main results of this activity and will also include the latest trends. The main properties and switching performance of new gases are compared to SF$_6$. The most promising new gases are at the moment perfluoroketones and perfluoronitriles. Due to the high boiling point of these gases, in HV applications mixtures with CO$_2$ are used. For MV insulation perfluoroketones are mixed with air, but also other combinations might be possible. The dielectric and switching performance of the mixtures, with mixing ratios that allow sufficiently low operating temperatures, is reported to be only slightly below SF$_6$. Minor design changes or de-rating of switchgear are therefore necessary. Differences between the gas mixtures are mainly in the boiling point and the GWP.

Keywords: SF$_6$ alternative gases, CO$_2$, Circuit Breaker.

1. Introduction

SF$_6$ is widely used in electric power transmission and distribution systems, as for example in gas insulated switchgear (GIS), circuit breakers (CB) and medium voltage (MV) load break switches. It combines unique electrical insulation and arc interruption capability [2]. However, it is also a very strong greenhouse gas with a global warming potential (GWP) of about 23500 over a time horizon of 100 years, e.g. [3] and its use is regulated and restrictions are discussed. Therefore, search for alternative gases for use in power applications has been ongoing since about two decades ago e.g. [4, 5]. The state of the art of SF$_6$ alternative gases for switching applications was recently addressed in an initiative of the current zero club (CZC) [1] in collaboration with CIGRE. A survey was done collecting all the available recent literature on the topic. The result was presented and discussed at a joint workshop at the CIGRE session 2016. The present paper gives the main results of this survey. Since vacuum switching technology is a separate ongoing activity [6], it will be left out in the present review.

2. Alternative gases

The intensification of search for alternative gases started about two decades ago [4, 5] after the Kyoto protocol was agreed in 1997 and further increased in the last 10 years (e.g. [7–15]). Important requirements for alternative gases were identified as: Low GWP, zero ozone depletion (ODP) potential, low toxicity, non-flammability, high dielectric strength, high arc quenching and heat dissipation capability, stability and material compatibility and availability on market.

From various studies of gases of natural origin, CO$_2$...
3. Properties of pure gases and mixtures

The properties of the selected alternative gases with reference to SF$_6$ are shown in table 1. The GWP for the various gases are different: the C4–PFN has a much higher GWP than CO$_2$ or C5–PFK that are both around 1. All the gases of interest are not flammable, have no ODP and are non-toxic according to technical and safety data sheets available from the chemical manufacturer [21, 22]. The dielectric strength of pure C4–PFN and C5–PFK is nearly twice that of SF$_6$. CO$_2$ has a dielectric withstand comparable to air [11, 17], i.e. significantly below that of SF$_6$. The properties of gases and mixtures when used in switchgear are shown in table 2. The concentration of admixtures of C4–PFN and C5–PFK with the buffer gas is given in the second column and is typically below 13% (molar concentration). Note that for the use of C5–PFK in CO$_2$ additionally an oxygen admixture is reported, since the presence of oxygen reduces the generation of harmful by-products like CO and solid by-products such as soot [30]. Due to a reduced dielectric withstand of the mixtures compared to SF$_6$ (column 6) at the same pressure the minimum operating pressure needs to be increased to about 0.7...0.8 MPa for C5–PFK and C4–PFN when using CO$_2$ as the buffer gas for HV application, see column 3 in table 2. For Air/C5–PFK mixtures in MV application 0.13 MPa can be kept and the dielectric withstand of SF$_6$ is approached. The high dielectric withstand of mixtures with relatively low admixture ratios of C4–PFN or C5–PFK can be explained by a synergy effect [7, 30, 31], i.e. a non-linear increase of the dielectric strength with the admixture ratio, as it is known for SF$_6$/N$_2$ mixtures [32]. The GWP of mixtures with C5–PFK is negligible, at the cost of a higher minimum operating temperature. Low temperature applications of e.g. $-25\, ^\circ C$ for HV can be covered by pure CO$_2$ or CO$_2$+C4–PFN mixtures. This is at the cost of significantly reduced dielectric withstand in case of pure CO$_2$ or significantly higher GWP in case of C4–PFN mixtures. Due to strong dilution, the toxicity of the mixtures is well below that of the pure substances, see e.g. [7, 33].

4. Switching performance of alternative gases

Preliminary information on the switching performance of pure CO$_2$ and CO$_2$ mixtures is collected in table 3. The performance of SF$_6$ is given for comparison. With an enhanced operating pressure compared to SF$_6$ the cold dielectric strength, which is e.g. a measure of the performance in capacitive switching, can reach that of SF$_6$.

In the scanned literature, only qualitative statements on the switching performance of C4–PFN and C5–PFK mixtures could be found. For CO$_2$ a few quantitative comparisons exist. Very roughly, for pure CO$_2$ at an increased filling pressure of about 1 MPa, about 2/3 of the dielectric and thermal interruption

Table 1. Properties of pure gases compared to SF$_6$.

<table>
<thead>
<tr>
<th>CAS number</th>
<th>Boiling point °C</th>
<th>GWP</th>
<th>ODP</th>
<th>Flammability</th>
<th>Toxicity LC50 (4h) ppmv</th>
<th>Toxicity TWA ppmv</th>
<th>Dielectric strength at 0.1 MPa</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF$_6$</td>
<td>2551–62–4</td>
<td>-64</td>
<td>0</td>
<td>No</td>
<td>-</td>
<td>1000</td>
<td>1</td>
<td>7, 16</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>124–38–9</td>
<td>-78.5</td>
<td>1</td>
<td>0</td>
<td>>3000000</td>
<td>5000</td>
<td>≈0.3</td>
<td>0, 9, 17</td>
</tr>
<tr>
<td>C5–PFK</td>
<td>756–12–7</td>
<td>26.5</td>
<td><1</td>
<td>0</td>
<td>≈20000</td>
<td>225</td>
<td>≈2</td>
<td>2, 10, 15</td>
</tr>
<tr>
<td>C4–PFN</td>
<td>42532–60–5</td>
<td>4.7</td>
<td>2100</td>
<td>0</td>
<td>12000...15000</td>
<td>65</td>
<td>≈2</td>
<td>7, 16, 19, 20</td>
</tr>
</tbody>
</table>

1) The occupational exposure limit is given by a time-weighted-average (TWA), 8-hr.
2) Sublimation point

turned out to be the most promising arc quenching gas, e.g. [8, 11], possibly enhanced in performance by some additives [12], like e.g. O$_2$ or CF$_4$. However, as was shown, the switching and dielectric performances of CO$_2$ are both below those of SF$_6$, e.g. [11, 17]. Other interesting gases were identified to be fluorinated gases like CF$_3$I, hydrofluoroolefins (HFO1234ze and HFO1234yf), perfluoroethers (HFE245cb2), fluorooxiranes and hydrochlorofluorolefins (HCFO1233zd), e.g. [7, 13, 16, 22]. Taking all the requirements into account, the most promising candidates at present appeared to be the C5 perfluoroketone (CF$_3$C(O)CF(CF$_3$)2 or C5–PFK) [15] and the iso-C4 perfluoronitrile ((CF$_3$)2-CF-CN or C4–PFN) [19]. The dielectric performance of pure gases scales with the boiling point, i.e. gases with high dielectric strength usually also have a high boiling point, see e.g. [10]. For C5–PFK and C4–PFN, the boiling points at 0.1 MPa are 26.5 °C and $-4.7\, ^\circ C$, respectively. Thus, for application in switchgear, where a sufficiently low boiling point is needed for low temperature requirements, an admixture of a buffer gas is selected for this role in HV due to its cold dielectric strength, which is e.g. a measure of the minimum operating temperature. Low temperature applications of e.g. $-25\, ^\circ C$ for HV can be covered by pure CO$_2$ or CO$_2$+C4–PFN mixtures. This is at the cost of significantly reduced dielectric withstand in case of pure CO$_2$ or significantly higher GWP in case of C4–PFN mixtures.
The decomposition involving the new gases is not seen which start to decompose above approximately with and without admixtures [27]. IEC test duties as a problem over lifetime, but concentrations in the reactions with ablated contact and nozzle material.

formation is given so far on the decomposition rates of observed for this mixture [38]. No quantitative information of more than one order of magnitude lower are mixtures [30]. For partial discharges decomposition C5–PFK and C4–PFN molecules do not recombine to in case of C4–PFN, e.g. [32]. After decomposition the switching performance in the future. that dedicated design improvements can still increase of disconnector switches, e.g. [36, 37]. It is expected shown to be valid for the bus transfer switching duty nificantly lower than that of SF

switching performance of the new mixtures is not sig- tifications [36] or certain de-rating [30], suggesting that the new mixtures are passed with some design modifica-

considerable more experience seems to be needed on the post arcing toxicity of the potential SF6 substitute gases. Additional reported issues are: material compatibility [22, 32] (e.g. effects on sealings and grease), gas tightness and gas handling procedures. Therefore, it should not be expected that existing HV equipment can be filled with the new gases without design or material changes. Internal arc tests were done with all mixtures and no critical issues are reported, e.g. [7, 22]. Heat dissipation of the mixtures is slightly inferior to SF6 [7, 22], i.e. moderate de-rating or design changes might be necessary with respect to the current carrying capability. At present, field experience is gained with CO2 live-tank CB [19], being started some years ago. A CO2 filled CB is also commercially available [11]. With the C5–PFN mixtures for HV and MV pilot installations have been in operation successfully since 2015 in Switzerland [22, 39] and Germany [42]. Pilot installations with the CO2/C4–PFN mixture are planned in several European countries [7], such as a 145 kV indoor GIS in Switzerland, 245 kV outdoor Current Transformers in Germany and outdoor 420 GIL in UK and Scotland [7, 34, 35].

5. Conclusions and outlook
Published information on alternative gases for SF6 in switching applications has been reviewed. In their present state, these investigations have just started and are by far not as extensive as for SF6. The presently available manufacturer information on prop-
The lowest operating temperatures (e.g. vol. 4 [1]) Current Zero Club (CZC).

ably from all different alternatives, a convergence to past for SF toxicity are still required, as it was performed in the products after current switching and their level of development of these new SF properties shows that new gases (e.g. C5–PFK and C4–PFN) are available, which can compete with, but may not fully reach the performance of, SF6 when used in mixture with CO2 as the buffer gas. Main differences are in the insulation and interruption performances and boiling point with the latter defining the minimum operating temperature specified for the switchgear. The lowest operating temperatures (e.g. –50°C) can be reached with CO2. However, CO2 seems to have an overall lower interruption performance, especially in dielectric interruption and withstand, than gas mixtures containing C4–PFN or C5–PFK. The advantage of CO2/C5–PFK mixture compared with CO2/C4–PFN mixture is the negligible GWP of about 1 compared to 427...600 of the latter. The advantage of CO2/C4–PFN compared to CO2/C5–PFK is the lower minimum operating temperature of about –25°C compared to about –5°C of the latter. Since research and development of these new SF6 alternatives has just started, design improvements can be expected in the future. Exhaustive studies on decomposition products after current switching and their level of toxicity are still required, as it was performed in the past for SF6, in different operating conditions. Probably from all different alternatives, a convergence to a single solution can be expected on the longer term. For sure, much more investigations and experimental validations have to be carried out.

References

Table 3. Switching performance of gases and mixtures compared to SF6 at increased operating pressures in HV applications

<table>
<thead>
<tr>
<th>Gas</th>
<th>Operating pressure (MPa)</th>
<th>Dielectric strength</th>
<th>SLF performance compared to SF6</th>
<th>Dielectric recovery speed</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF6</td>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>0.8</td>
<td>0.5...0.7</td>
<td>close to SF6</td>
<td>close to SF6</td>
<td></td>
</tr>
<tr>
<td>CO2+C5–PFK/O2</td>
<td>0.7...0.8</td>
<td>close to SF6</td>
<td>0.8...0.87</td>
<td>close to SF6</td>
<td></td>
</tr>
<tr>
<td>CO2/C4–PFN</td>
<td>0.67...0.82</td>
<td>close to SF6</td>
<td>0.83... (1)</td>
<td>close to SF6</td>
<td></td>
</tr>
</tbody>
</table>

1) At same pressure build up
2) Same performance as SF6 is stated but it is not clear if this was under same condition

