COMPARISON OF COPPER AND GRAPHITE CRUCIBLES FOR SI EXTRACTION FROM TiO₂ - SiO₂ SYSTEM AT PLASMA-ARC HEATING

D. E. Kirpichev*, A. A. Nikolaev, A. V. Nikolaev

Baikov Institute of Metallurgy & Materials Science (IMET RAS), Leninskiy av. 49, 119334 Moscow, Russian Federation

* dym2004@bk.ru

Abstract. Plasma arc recovery melting of the quartz-leucoxene concentrate was investigated. Experiments were made in laboratory DC plasma arc furnace in copper and graphite crucibles. The best results were reached in a cold copper crucible. The temperature field of a pool was calculated in hot graphite and cold copper crucibles. It was shown that in graphite crucible diameter of anode spot is more, and material temperature in spot is less, than in copper crucible. This fact was suggested as a reason of the worst refinement in graphite crucible.

Keywords: DC plasma arc, anode spot, reducing, leucoxene, silicon, rutil.

1. Introduction

A considerable part of titaniferous raw materials in Russia is presented by oil-bearing quartz-leucoxene sands of the Yarega field, the Komi Republic [1]. These raw materials are nonconventional for the titaniferous industry and now are not processed. Thermal plasma technology emerges in processing of ilmenite [2, 3], and as a new frontier in processing of quartz-leucoxene concentrate. Plasma arc carbothermal melting of concentrate during which quartz reduces to SiO and evaporates from the fusion is the cornerstone of the process [4, 5]. Now the research of various options of hardware and technological optimization of the process is proceeded. In this work the results of melting in copper water-cooled and graphite radiation cooled crucibles were compared.

2. Experiment technique

Graphite was used as conventional reducer in plasma reactors. Melting was carried out in the laboratory DC plasma arc furnace under atmospheric pressure. The furnace includes a copper cylindrical water-cooled chamber with a diameter 100 mm and 250 mm high, closed from above by arch through which a copper cooled holder with a graphite electrode was entered. The electrode diameter was 50 mm. The electrode was supplied with electric drive and had a possibility of axial movement. The electric arc which current was regulated by ballast resistance was excited by making contact between the electrode and the bottom of the camera or crucible. The electrode had an internal axial channel with a diameter 20 mm. The furnace charge which consisted of graphite powder and concentrate was fed via axial channels in the holder and the electrode to the area of anode spot. Argon as transporting and plasma-forming gas was fed together with furnace charge to the arc column via the channel in the electrode. The furnace charge melted and a bathtub of fusion formed under the influence of the arc. The length of the arc gap was 1 - 3 cm. The gaseous products including SiO and CO were sent to the heat exchanger and then to the filter for collecting condensate. The chemical composition of quartz-leucoxene concentrate is given in Table 1.

<table>
<thead>
<tr>
<th>Element</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. %</td>
<td>17.0</td>
<td>32.8</td>
<td>1.65</td>
<td>2.07</td>
<td>≈ 46</td>
</tr>
</tbody>
</table>

Table 1. The chemical composition of quartz-leucoxene concentrate on the main components.

The electrode was supplied with electric drive and had a possibility of axial movement. The electric arc which current was regulated by ballast resistance was excited by making contact between the electrode and the bottom of the camera or crucible. The electrode had an internal axial channel with a diameter 20 mm. The furnace charge which consisted of graphite powder and concentrate was fed via axial channels in the holder and the electrode to the area of anode spot. Argon as transporting and plasma-forming gas was fed together with furnace charge to the arc column via the channel in the electrode. The furnace charge melted and a bathtub of fusion formed under the influence of the arc. The length of the arc gap was 1 - 3 cm. The gaseous products including SiO and CO were sent to the heat exchanger and then to the filter for collecting condensate. The chemical composition of quartz-leucoxene concentrate is given in Table 1.

The dimension of particles was 1 mm. According to the X-ray analysis titanium and silicon in concentrate are present as TiO₂ and SiO₂ oxides. Concentrations of TiO₂ and SiO₂ were 54.7 and 36.4 % respectively. The dimension of graphite particles was 0.1 - 0.2 mm when using a graphite crucible and 0.3 - 0.5 mm when using a copper crucible. Content of carbon in furnace charge in case of graphite crucible was 20.7 % and 11.5 % in case of copper. Ingots in crucibles had a sufficient conductivity. It was possible to excite the arc by making contact between electrode and ingot.
3. Results and discussion

The condensed products of melting were ingot of synthetic rutile and powder on the basis of silicon oxide. The powder was collected from the camera walls, the heat exchanger and the filter. Besides powder and ingot gaseous product formed. It is possible to assume that it was CO. The specific electric power consumption, calculated for graphite crucible as the relation of arc power to feed rate, \(Q = P_d/V \), approximately twice exceeded the similar parameter for copper: 39.2 against 20.4 MJ/kg. Despite it, the extent of silicon removal in graphite crucible was 1.4 times less than for copper: 35 and 48% respectively [6]. Lower extent of silicon removal in graphite crucible is caused by lower temperature of fusion. The temperature of fusion was calculated using the mathematical model of bathtub heating [7]:

\[
T(r) = 0.282 \frac{P_t}{\lambda \cdot r_0}(\phi(r) - \phi(r_s)) + T_s, \tag{2}
\]

where \(T(r) \) - temperature field of bathtub surface, \(r_0 \) - radius of anode spot, \(r_s \) - radius of crucible, \(T_s \) - temperature of material near the crucible wall, \(\lambda \) - heat conductivity of material, \(P_t \) - heat power that supports the temperature field \(T(r) \), \(\phi(r) = e^{\frac{4}{T_k}} \cdot I_0 \left(\frac{2r}{T_k} \right) \), \(I_0 \) - Bessel’s function imaginary argument. Anode spot is restricted by isotherm \(T_a \) at which intensive evaporation of material begins [8] (\(T_a \approx 2000 \) K for SiO evaporation [5]). The equation 2 can be transformed into:

\[
T_0 = 0.282 \frac{P_t}{\lambda \cdot r_0}(\phi(r_0) - \phi(r_s)) + T_s. \tag{3}
\]

For copper crucible \(T_s \approx 400 \) K, for graphite crucible \(T_s \) can be solved from equation:

\[
P_t = 2\pi \cdot r_s^2 \cdot \epsilon \cdot \sigma \cdot (T_s^4 - T_k^4), \tag{4}
\]

where \(\epsilon \approx 0.8 \) - the blackness of material, \(\sigma \) - Stefan’s Boltzmann’s constant, \(T_k = 293 \) K - the temperature of water-cooled chamber. The heat balance of bathtub can be written as:

\[
P_s = P_t + P_r + P_{ch}, \tag{5}
\]

where, \(P_s \) - the total heat power, transferred to bathtub from the arc (for discussed laboratory furnace \(P_s \approx 0.5 P_d \), where \(P_d \) is the total arc power), \(P_{ch} \) - the heat of evaporation (\(P_{ch} = Q_{ch} \cdot V \cdot \eta \), where \(Q_{ch} = 8.9 \) MJ/kg - specific heat of evaporation, \(V \) - charge feed rate), \(P_r \) - radiation losses from bathtub surface. It was consumed that radiation losses are absent beneath the electrode. In this case

\[
\eta = \frac{m_0 - m}{m_0} \cdot 100\%, \tag{1}
\]

where \(m_0 \) and \(m \) - silicon percentage in concentrate and in ingot, for a graphite crucible was 1.4 times less than for copper: 35 and 48% respectively [6].

![Figure 1. Calculated temperature fields of a bathtub surface. r - radial distance from the center; 1 - copper crucible; 2 - graphite crucible; T0 - the temperature of the reduction start.](image)

\[
P_r = 2\pi \cdot r \cdot \epsilon \int_{r_0}^{r_s} r(T(r)^4 - T_k^4)dr, \tag{6}
\]

where \(r_e \) - electrode radius.

Equations (2)–(6) were solved together as a system against \(P_t, P_r, T(r), T_s \), and \(r_e \). In Figure 1 the calculated temperature fields of a bathtub surfaces in copper and graphite crucibles are presented. Calculation showed that the peripheral temperature of fusion is higher in hot graphite crucible, than in copper. However this temperature does not affect on reduction velocity because it remains less than the temperature of the reduction start: \(T_a = 2000 \) K [5]. At the same time increase in peripheral temperature leads to considerable losses of radiation heat from bathtub surface and \(P_t \) power at the same time decreases. Decrease in concentration of a thermal stream and temperature of material in the region of anode spot is the result of it. In the case of graphite crucible the axial temperature of a bathtub is \(T_c = 3580 \) K, whereas in the case of the copper crucible \(T_c = 4000 \) K. It was the reason of lower extent of silicon removal in graphite crucible.

4. Conclusion

The efficiency of silicon removal in a hot graphite crucible can be lower than in water-cooled copper. The reason of it is low axial temperature in hot graphite crucible due to high radiation losses from the periphery of the bathtub.

Acknowledgements

The work was performed as the state task No. 007-00129-18-00.

References

[1] V. I. Vlasenko. O proekte kompleksnogo osvoenii yaregskogo nefetitaniyovogo mestorozhdeniya [about the project of complex development of the yaregsky titanict
field]. (in russ.).

