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Abstract.
For the development and optimization of gas circuit breakers and switchgear, a detailed under-

standing of the arc related processes is of great importance. Ideally, analytical or numerical models
with predicitive capability can be found and used during the design process preceding costly and
time-consuming experiments.

In the present contribution, we report on a novel measurement and evaluation technique to
determine the thermal arc time constant ("thermal inertia") that is commonly used in simple black-box
models to describe the arc’s dynamical properties. The method is introduced and applied to example
arcs under varying blow gas conditions in air.
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1. Introduction
The understanding of electric arcs is crucial for the
design and improvement of mechanical switches in
the power system. This applies for a wide range of
switches, from low voltage AC to HVDC. One impor-
tant internal parameter of arcs is their time constant.
It describes a characteristic time for the exchange of
energy between arcs and their surrounding. This has
a considerable impact on the electrical behavior of the
arc.
It is well established that interruption becomes

more difficult for higher current gradients before zero
crossing. This is due to the fact, that the conductance
of the arc at zero crossing is not at its steady state
for zero current, i.e. zero, but at a finite value. For
current zero crossing, this means that the arc still
contains considerable thermal energy and thus still
conducts current. The conductance at current zero
(CZ) depends on the arc time constant, as well as
on the current gradient before CZ. For steep current
gradients, or large time constants, the conductance
at current zero is high, which can lead to reignitions.
As the time constant varies with gas flow conditions,
nozzles and gas types, it is one important performance
parameter of mechanical interrupters.
In HVDC, current interruption can be realized us-

ing a mechanical circuit breaker and a counter current
injection circuit. In these current injection topologies,
the current wave shape (especially at CZ) is deter-
mined by the circuit breaker itself. Consequently,
it is possible to implement circuits that drastically
decrease the current gradient shortly before CZ to
improve interruption [1, 2]. The length of the phase
with decreased current gradient needed to improve
interruption performance is defined by the arc time
constant in this case. The arc time constant is thus
an optimization parameter.

Another field of application where it is important
to know the arc time constant is the optimization of
passive oscillation switches, which are commonly used
as transfer switches (most notably the metal return
transfer switch) in HVDC applications. Here, the
voltage-current characteristic of interrupters leads to
the growth of an oscillating current. For fast interrup-
tion, high current oscillation frequency is helpful, as
long as the the oscillation period is longer than 20τ .
This means in this application, the arc time constant
of the should be minimized.

To determine the characteristic time constant τ of a
given setup, several possibilities exist[3–7], which were
evaluated in previous work [8, 9]. All of these have
certain drawbacks, and do not allow the determination
of thermal inertia at arbitrary current levels.
According to [8, 9] a staircase current waveform

would be ideal, but short current impulses superim-
posed to quasi-DC current are proposed if a step
with sufficiently steep slope is impossible to create.
In this paper, a method to determine the time con-
stant of arcs, based on triangular impulse currents,
is developed and implemented. As validation case,
tests showing the transition between free-burning and
blown arc are presented.

2. Theory
The response of an arc to dynamic changes in current
is generally described by black box models, namely
the ones of Mayr and Cassie [10, 11]. These mod-
els assume that the loss terms are a function of the
arc conductance g and cannot change instantaneously.
Some time is needed to change to the new equilibrium
state, which can be described by a time constant. In
case of a current increase from i0 to i1, it must be a
change that leads to a greater conductance g1. This
change requires a certain change of the arc enthalpy,
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to either increase the arc radius, or the temperature.
The required energy has to be supplied by the differ-
ence of the instantaneous power the arc loses to its
surroundings Pcool (due to radiation, convection and
thermal conduction) and instantaneous heating power
u · i. The Mayr model is usually used to describe arcs
during a few microseconds before and after current
zero in AC circuit breakers. It assumes the instan-
taneous cooling power Pcool is constant and there is
one time constant τ which describes the relaxation
process. Cassie, Habedank, Shavemaker and many
others [11–13] generalized this, by making Pcool and
possibly τ a function of g, to describe the high current
phase as well. The most general form is therefore

1
g

dg

dt
= 1
τ(g)

(
ui

Pcool(g)
− 1

)
. (1)

The physical interpretation of this model is that the
arc consists of one energy reservoir (the enthalpy of
the heated plasma column) and that the conductance
is the fundamental variable to describe its state. In
steady state, ohmic heating equals the sum of all
cooling terms, i.e. Pcool = u · i, and therefore g (and
with it the arc enthalpy) doesn’t change. In transient
conditions, for example at falling current, there is a
difference between heating and cooling power, leading
to heating or cooling of the plasma, i.e. the arc adapts
to changing conditions by shrinking for example. For
simplicity, the most general form of the transient
arc model equation (1) will be called Mayr Equation
throughout the manuscript, although Cassie Equation
would be equally right or wrong, because the two only
differ in how Pcool depends on g (see [14–16]).
The literature mentioned above provides differ-

ent modified models, which assume certain analytic
functions for Pcool(g) and τ(g). Cassie for exam-
ple assumes a constant voltage during high currents.
Schwarz [3] introduced some additional variables to
parameterize Pcool(g) and τ(g), and more recently
also other modifications were published. A summary
of several models can be found in [16]. In the present
work, those more specific models were not studied, but
the generalized form was used. The only constraint
this general form has is that both Pcool(g) and τ(g)
only depend on g and not on u or i, without specify-
ing a priori what that dependence should be. Other
external factors, like contact separation distance and
blowing gas flow obviously also impact the arc. The
Mayr equation (1) assumes those external conditions
remain constant.

This arc model leads to the following behaviour: All
changes of external conditions — namely how much
current flows through the arc — that take much longer
than 5 τ can be considered quasi-static. The difference
between Pcool and u · i will always be virtually zero,
and the system will be in equilibrium any time.

On the other hand, current variations that happen
on a time scale much shorter than τ do not allow the
arc to react. The conductance will not change, and
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Figure 1. Nozzle used for the experiments, made from
PMMA to allow optical observation. Gas flow is from
right to left. The downstream contact tip is flush with
the nozzle exit plane, the upstream contact protrudes a
few mm into the nozzle segment that is still straight.
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Figure 2. Current and arc voltage during measurement
to determine arc constant τ at three current levels.

the arc will behave like a resistor [10]. Any method
that aims to determine the arc time constant should
create current changes on a time scale that is between
these two extreme regions.

3. Experimental Methods
The DUT is a model interrupter using air, described
in more detail in [2]. A converging-diverging nozzle
with single flow direction is used, as shown in figure 1.
The contacts are stationary and have a diameter of
22 mm. The arc is initiated using an ignition wire.
The blowing system uses pressure stored in gas bottles
and fast acting valves.
A flexible pulsed direct current source (FPDCS)

[9, 17] is used to generate the current waveforms for
testing. The current shape can be formed by up to
three independently acting buck-converter modules.
In the performed tests, a base current level was

kept by a module with large inductance (4.5 mH).
On this, fast rising spikes are superimposed by a
second module with low inductance (0.2 mH). The
voltage and current traces for a measurement with
three different base current levels are illustrated in
Figure 2.
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Figure 3. Close-up of a single spike, used to determine
arc time constant τ . Top plot shows measured values u
and i, bottom plot shows gcalc = i/u and the fit for τ =
36 µs, Pcool,1(0.71S) = 29 kW and Pcool,2(0.95S) =
45 kW.

Figure 3 shows measured voltage and current for
a representative single spike. The conductance calcu-
lated from voltage and current, as well as the fit by
the described algorithm are illustrated as well.

4. Fitting Algorithm
Determination of τ means finding a solution for which
equation (1) accurately reproduces the measured re-
sults, without using any analytical formula that ex-
presses τ as a function of other parameters. This
requires experimental data of dynamic arc behavior,
i.e. current and voltage waveforms of an arc that is
perturbed from a steady state. In the present study, a
quasi-static DC current (gradient lower than 1 A µs−1)
is superimposed with transient current impulses of
triangular wave-shape of high gradient (greater then
10 A µs−1), as shown in Figure 2. If the rise time and
fall time of the impulse are in the order of magni-
tude of τ , it is possible to determine τ , by a method
proposed in [9].
First, a value of τ is assumed. Then, the conduc-

tance and voltage response of an arc with the assumed
value of τ is calculated with equation (1). In a third
step, the calculated conductance waveform is com-
pared to the measured values i/u, by calculating the
root mean square difference. This process is repeated
for different values of τ , until a minimum difference is
found.

In the present work, an algorithm to solve the Mayr
equation was implemented, tested and used to perform
the fit. A key requirement to the algorithm is to avoid
the need to calculate derivatives of measured signals.
Differentiating measured current and voltage signals
accurately and with sufficient bandwidth is impossible,

due to the inherent decrease of signal to noise ratio of
derivatives. The optimized fitting algorithm instead
uses the forward Euler method to solve equation (1),
which makes the following assumptions:
� The arc is in steady state before the current tran-
sient, therefore all variables at t0 are known g0 =
i0/u0, Pcool,0(g0) = u0i0

� During the current transient changes in g are small
enough so τ(g) can be considered constant.

� During the current transient, Pcool(g) can be lin-
earized, by specifying a second point Pcool,1(g1)
additional to the starting point Pcool,0(g0).

� There are no random fluctuations during the tran-
sient period due to other reasons that would also
alter Pcool(g), like arc root movement etc.
With these assumptions, initial conditions and as-

sumed values for τ and Pcool,1(g1), equation (1) can
be used to solve for the conductance waveform g(t),
if the current waveform i(t) is given. This is done by
iteratively calculating ġ(t), g(t) and u(t) for one point
in time, using the values from the previous time step.
To minimize the error, time steps much smaller than
τ have to be used. Since the sample rate of current
and voltage is high (>50 MS) to reject common mode
noise of the source (see [17]), this is not a problem.

The result for idealized current waveforms is shown
in Figure 4. The response of the arc depends on the
slope and duration of the current spikes, relative to
τ . For the first spike τ was set to 1/4 of the rise
time, which means the conductance lags behind the
instantaneous value, but has a similar shape. For the
second spike τ is equal to the rise time. Here, the lag of
the conductance is so significant that the shape of the
waveform starts to differ from the hypothetical steady
state curve. This also leads to bigger changes of the
arc voltage. The last spike has a τ four times longer
than the rise time, meaning the current rises and falls
so fast that the conductance can hardly follow. Peak
conductance is reached almost at the end of the spike,
and afterwards exponential decay follows.

To aid interpretation, dashed lines show the voltage
and conductance values one would obtain for an arc
that is always in steady state, i.e. for τ = 0. Dotted
lines represent the resistive case, in which the arc
conductance does not change at all, i.e. for τ =∞. In
this picture it becomes clear why a rise time around τ
is favoured. For this spike, the conductance changes
significantly, but at the same time it is also signifi-
cantly delayed compared to the steady curve. The
voltage curve is in between the two extremes during
the rising edge, and shows significant undershoot on
the falling edge. The left spike with rise time 4τ is
too slow for the arc to be transient. Its conductance
follows the steady state curve closely, which leads only
to a small deviation of the voltage from the static u(i)
value. This makes it hard to determine a numeric
value for τ , especially if the deviation of the voltage
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Figure 4. Simulated response of an arc to triangular
current impulses with 10 µs rise and fall time. Arc time
constant τ is changed for each spike (2.5 / 10 / 40 µs).

curve becomes small enough to be in the order of
the inductive voltage drop between the two voltage
probes. The rightmost spike is too fast for the arc to
properly react at all. Its conductance does not change
as much, and the voltage follows the resistive curve.

5. Results
To test the sensitivity of the presented method, several
measurements have been conducted and analyzed.
To introduce a considerable change in the arc’s

thermal inertia, in the first experiment the transition
between free burning and blown conditions at fixed
base current level are observed. Figure 5 illustrates
pressure build-up in the nozzle throat, arc voltage and
current as well as τ for this measurement. Compared
to the blown phase, cooling is considerably lower in
the free burning phase. As expected, this manifests
in a lower arc voltage. Optical investigations with a
high speed camera show a large luminescent region.
When gas flow is initiated at around 15 ms, this region
shrinks which coincides with a decreasing time con-
stant, even before there is significant pressure change
at the throat. As pressure builds up, the arc voltage
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Figure 5. τ for variable pressure for a base current
of 130A and a spike amplitude of 100A. Gasflow
starts accellerating around 16ms as seen by highspeed
footage.

increases until the pressure reached its new steady
state value.
The development of τ is reasonable. A smaller,

more confined arc is able to exchange energy with
its surrounding faster, resulting in a reduced thermal
inertia. Arc radius as well as measured τ start to de-
crease considerably as soon as gas flow is observed on
the highspeed video, which is already a few ms before
the flow chockes and pressure build-up is measured,
as shown in figure 6. Consequently, the measurements
can be seen as a proof of concept for the presented
method.

In a second step, blowing pressure is kept constant
and the arc’s time constant is evaluated for a fixed
current level. The results for 115 spikes are illustrated
in in Figure 7. It can be seen that the arc time constant
under these conditions is mainly around τ = 5 µs
with values ranging from τ = 0 µs . . . 10 µs. Without
further investigations it cannot be concluded if this
spread represents real variations in arc time constants
or the uncertainty of the method itself.

6. Conclusions
An important characteristic of (switching) arcs is the
time constant with which the arc can exchange ther-
mal energy with its surrounding and therefore change
its conductance.
For this article, a method to determine thermal

inertia (i.e. time constant) of arcs by using triangular
impulse currents has been implemented. In example
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Figure 6. Three frames form highspeed video, showing
appoximately the same part as figure 1. Top: Freeburn-
ing stage, captured at 13.120ms, Center: transition,
flow already visible upstream arc starts contracting,
captured at 19.125ms. Bottom: Chocked flow condi-
tions reached, arc radius fully contracted, caputured at
24.620ms. Exposure time was 0.16 µs in all cases.
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Figure 7. Histogram of the fitted arc time constant τ
for a base current of 140A (Ntotal = 115 spikes).

measurements, thermal inertia of an axially blown
switching arc has been investigated for the transition
from free-burning to blown. The results align well
with the expected development, which makes this
method a promising tool for future investigations.
The logical next improvement of the method is a
more detailed analysis of the scattering of τ shown
in figure 7, especially to distinguish between real arc
properties and experimental uncertainty.
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